Title of article :
Mining quantified temporal rules: Formalism, algorithms, and evaluation
Author/Authors :
David Lo، نويسنده , , G. Ramalingam ، نويسنده , , Venkatesh-Prasad Ranganath، نويسنده , , Kapil Vaswani، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
Libraries usually impose constraints on how clients should use them. Often these constraints are not well-documented. In this paper, we address the problem of recovering such constraints automatically, a problem referred to as specification mining. Given some client programs that use a given library, we identify constraints on the library usage that are (almost) satisfied by the given set of clients.The class of rules we target for mining combines simple binary temporal operators with state predicates (composed of equality constraints) and quantification. This is a simple yet expressive subclass of temporal properties (LTL formulae) that allows us to capture many common API usage rules. We focus on recovering rules from execution traces and apply classical data mining concepts to be robust against bugs (API usage rule violations) in clients. We present new algorithms for mining rules from execution traces. We show how a propositional rule mining algorithm can be generalized to treat quantification and state predicates in a unified way. Our approach enables the miner to be complete (i.e. , mine all rules within the targeted class that are satisfied by the given traces) while avoiding an exponential blowup.We have implemented these algorithms and used them to mine API usage rules for several Windows APIs. Our experiments show the efficiency and effectiveness of our approach
Keywords :
reverse engineering , Specification mining , Dynamic analysis , Quantification , Temporal rules
Journal title :
Science of Computer Programming
Journal title :
Science of Computer Programming