Title of article :
An Invariance Principle for Triangular Arrays
Author/Authors :
Anthony DAristotile، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
-326
From page :
327
To page :
0
Abstract :
Let A n, i be a triangular array of sign-symmetric exchangeable random variables satisfying nE(A 2 n, i ) (longrightarrow)1, nE(A 4 n, i ) (longrightarrow)0, n 2 E(A 2 n, 1 A 2 n, 2) (longrightarrow)1. We show that (sigma)[nt] i=1 A ni, 0 <= t <= 1, converges to Brownian motion. This is applied to show that if A is chosen from the uniform distribution on the orthogonal group O n and X n(t)= (sigma) [nt] i=1 A ii, then X n converges to Brownian motion. Similar results hold for the unitary group.
Keywords :
exchangeability , invariance principle , Haar measure , triangular array , sign-symmetry
Journal title :
JOURNAL OF THEORETICAL PROBABILITY
Serial Year :
2000
Journal title :
JOURNAL OF THEORETICAL PROBABILITY
Record number :
108250
Link To Document :
بازگشت