• Title of article

    Generating Uniform Random Vectors

  • Author/Authors

    Asci، Claudio نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    -332
  • From page
    333
  • To page
    0
  • Abstract
    In this paper, we study the rate of convergence of the Markov chain X n+1=AX n +b n mod p, where A is an integer matrix with nonzero integer eigenvalues and {b n } n is a sequence of independent and identically distributed integer vectors. If (lambda)i(not equal)±1 for all eigenvalues (lambda)i of A, then n=O((log p)2) steps are sufficient and n=O(log p) steps are necessary to have X n sampling from a nearly uniform distribution. Conversely, if A has the eigenvalue (lambda)1=±1, and (lambda)i(not equal)±1 for all i(not equal)1, n=O(p2) steps are necessary and sufficient.
  • Keywords
    finite state Markov chains , Rates of convergence , congruential generators
  • Journal title
    JOURNAL OF THEORETICAL PROBABILITY
  • Serial Year
    2001
  • Journal title
    JOURNAL OF THEORETICAL PROBABILITY
  • Record number

    108303