Title of article :
On the Fine Structure of Stationary Measures in Systems Which Contract-on-Average
Author/Authors :
Matthew Nicol، نويسنده , , Nikita Sidorov، نويسنده , , David Broomhead، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
-714
From page :
715
To page :
0
Abstract :
Suppose {f 1,...,f m } is a set of Lipschitz maps of R^d . We form the iterated function system (IFS) by independently choosing the maps so that the map f i is chosen with probability p i ((sigma) ^m i=1 p i =1). We assume that the IFS contracts on average. We give an upper bound for the upper Hausdorff dimension of the invariant measure induced on d and as a corollary show that the measure will be singular if the modulus of the entropy (sigma)i p i log p i is less than d times the modulus of the Lyapunov exponent of the system. Using a version of Shannonʹʹs Theorem for random walks on semigroups we improve this estimate and show that it is actually attainable for certain cases of affine mappings of R.
Keywords :
Iterated function system  , Hausdorff dimension  , entropy  , random walk , stationary measure 
Journal title :
JOURNAL OF THEORETICAL PROBABILITY
Serial Year :
2002
Journal title :
JOURNAL OF THEORETICAL PROBABILITY
Record number :
108361
Link To Document :
بازگشت