Title of article :
On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour
Author/Authors :
A Leyland، نويسنده , , A Matthews، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2000
Pages :
11
From page :
1
To page :
11
Abstract :
Although hardness has long been regarded as a primary material property which defines wear resistance, there is strong evidence to suggest that the elastic modulus can also have an important influence on wear behaviour. In particular, the elastic strain to failure, which is related to the ratio of hardness (H) and elastic modulus (E), has been shown by a number of authors to be a more suitable parameter for predicting wear resistance than is hardness alone. There is presently considerable interest in the development of nanostructured and nanolayered coatings, due to the fact that materials with extreme mechanical properties (which are difficult to synthesise by other methods) can be created, particularly when using plasma-assisted vacuum processing techniques. Until now, scientific research has been directed mainly towards the achievement of ultra-high hardness, with associated high elastic modulus, the latter of which, conventional fracture mechanics theory would suggest, is also desirable for wear improvement (by preventing crack propagation). In this study, we discuss the concept of nanocomposite coatings with high hardness and low elastic modulus, which can exhibit improved toughness, and are therefore better suited for optimising the wear resistance of ‘real’ industrial substrate materials (i.e. steels and light alloys, with similarly low moduli). Recent advances in the development of ceramic–ceramic, ceramic–amorphous and ceramic–metal nanocomposite coatings are summarised and discussed in terms of their relevance to practical applications. We also discuss the significance of elastic strain to failure (which is related to H/E) and fracture toughness in determining tribological behaviour and introduce the topic of metallic nanocomposite coatings which, although not necessarily exhibiting extreme hardness, may provide superior wear resistance when deposited on the types of substrate material which industry needs to use.
Keywords :
Coating , Tribology , Wear , H/E , Nanocomposite
Journal title :
Wear
Serial Year :
2000
Journal title :
Wear
Record number :
1084042
Link To Document :
بازگشت