Title of article :
Molecular organogels of the sodium salt of (R)-12-hydroxystearic acid and their templated syntheses of inorganic oxides
Author/Authors :
Xiao Huang، نويسنده , , Richard G. Weiss، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2007
Pages :
11
From page :
7375
To page :
7385
Abstract :
(R)-12-Hydroxystearic acid (HSA), a natural product from castor oil, is a well-known low-molecular mass organogelator (LMOG). Here, we demonstrate that the sodium salt of HSA, HSA-S, is an extremely versatile and efficient LMOG. Furthermore, its self-assembled fibrillar networks (SAFINs) in gels with ethanol, benzene, tetrahydrofuran, and dimethyl sulfoxide, as well as the gel of HSA with benzene, are shown to act as templates during the sol–gel polymerization of tetraethyl orthosilicate (TEOS) in the absence or presence of an external catalyst. The templated, fiber-like objects obtained after calcinations have been characterized. The shape of the templated silica is strongly influenced by the catalyst applied. In addition, it has been possible to effect the formation of assemblies of nanoscale objects of Fe2O3 and CuO by polymerization of appropriate precursors in HSA-S based gels and in suspensions, respectively, followed by drying and calcination. The procedures employed are efficient and inexpensive protocols to make porous nanomaterials using organogels. Typically, templated syntheses of such materials in organogels have employed less accessible and more structurally complex LMOGs than HSA-S or HSA. Electrostatic interactions via Na+ bridges or H-bonding between silicate intermediates and gelator strands are proposed to be a primary driving force for templating.
Keywords :
Template synthesis , Organogel , (R)-12-Hydroxystearic acid , Silica , Sol–gel process
Journal title :
Tetrahedron
Serial Year :
2007
Journal title :
Tetrahedron
Record number :
1091300
Link To Document :
بازگشت