Title of article :
Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel
Author/Authors :
B.M. Lane، نويسنده , , T.A. Dow، نويسنده , , R. Scattergood، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2013
Abstract :
An Arrhenius-type thermochemical wear model proposed by past researchers is evaluated for predicting diamond tool wear when machining low carbon steel. Tool temperature values are determined using finite element modeling. These temperatures are related to tool wear measured after diamond turning tests on a low carbon steel workpiece to determine constants in the Arrhenius-type model. Measured tool wear shows a transition in worn tool shape from low speed (1 mm/s) to high speed (4 m/s) machining tests. Model results show a minimum value of wear per cutting distance occurs at a cutting speed of 2.5 m/s. The model also gives an activation energy between 25.0 kJ/mol and 29.3 kJ/mol. In addition, this model is used to explain experimental results obtained by others researching chemical wear of diamond.
Keywords :
Diamond tool , electron microscopy , Diffusion , FEM