Title of article :
Development of Biobased Synthetic Fluids: Application of Molecular Modeling to StructurePhysical Property Relationship
Author/Authors :
Adhvaryu، Atanu نويسنده , , Sharma، Brajendra K. نويسنده , , Erhan، Sevim Z. نويسنده , , Hwang، H. S. نويسنده , , Perez، Joseph M. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
-927
From page :
928
To page :
0
Abstract :
Biobased synthetic fluids are preferred alternatives to petroleum-based products due to their nontoxic and ecofriendly nature. Recent developments in biobased synthetic lubricants are a result of their comparable performance properties with mineral oils for industrial and automotive applications. These synthetic fluids can be chemically custom designed for a specific application. To develop an optimized molecule that can translate performance properties comparable to or at par with existing petroleum-based products, via chemical synthesis pathway alone, will be an expensive and time-consuming exercise. Molecular modeling of desired compounds and subsequent computation of their minimum energy profile, steric environment, and electron charge density distribution, etc., prior to actual synthesis, can shed valuable information on their physicochemical performance properties. Based on such information, chemical synthesis can be focused only on the promising molecules. Calculations based on equilibrium geometries were optimized using AM1 semiempirical molecular orbital models. It was observed that ring opening of the triacylglycerol epoxy group and subsequent derivatization of the epoxy carbons can improve the oxidation and low-temperature stability of these synthetic lubricant base oils.
Keywords :
Harmonic , magnetic
Journal title :
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Serial Year :
2006
Journal title :
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Record number :
109568
Link To Document :
بازگشت