Title of article :
Prediction of membrane fouling in the pilot-scale microfiltration system using genetic programming Original Research Article
Author/Authors :
Tae-Mun Lee، نويسنده , , Hyunje Oh، نويسنده , , Youn-Kyoo Choung، نويسنده , , Sanghoun Oh، نويسنده , , Moongu Jeon، نويسنده , , Joon Ha Kim، نويسنده , , Sook-Hyun Nam، نويسنده , , Sangho Lee، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
285
To page :
294
Abstract :
In the recent past, machine learning (ML) techniques such as artificial neural networks (ANN) or genetic algorithm (GA) have been increasingly used to model membrane fouling and performance. In the present study, we select genetic programming (GP) for modeling and prediction of the membrane fouling rate in a pilot-scale drinking water production system. The model used input parameters for operating conditions (flow rate and filtration time) and feed water quality (turbidity, temperature, algae pH). GP was applied to discover the mathematical function for the pattern of the membrane fouling rate. The GP model allows predicting satisfactorily the filtration performances of the pilot plant obtained for different water quality and changing operating conditions. A valuable benefit of GP modeling was that the models did not require underlying descriptions of the physical processes. GP has displayed the potential to evaluate membrane performance as a feed-forward simulator toward an “intelligent” membrane system.
Keywords :
Prediction , Genetic programming , Membrane fouling
Journal title :
Desalination
Serial Year :
2009
Journal title :
Desalination
Record number :
1112458
Link To Document :
بازگشت