Title of article :
Influence of allosteric effectors on the kinetics and equilibrium binding of phosphoenolpyruvate (PEP) to phosphoenolpyruvate carboxylase (PEPC) from Zea mays Original Research Article
Author/Authors :
Joachim Frank، نويسنده , , Ronald J. Clarke، نويسنده , , Joachim Vater، نويسنده , , Josef F. Holzwarth، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
Phosphoenolpyruvate carboxylase (PEPC) the carbon dioxide processing enzyme of C4 plants, shows the features of an allosteric enzyme. Allosteric activators such as d-glucose-6-phosphate and glycine increase the affinity of PEPC for its substrate PEP at pH 8.0 and pH 7.0. Allosteric inhibitors like l-malate and l-aspartate predominantly decrease the affinity of the carboxylase for PEP at pH 7.0. This was demonstrated by determination of the enzymatic activity and stopped flow (SF) fluorimetry. The binding reaction of PEP to PEPC from Zea mays was measured using the fluorescence probe 2-p-toluidinonaphthalene-6-sulfonate (TNS). The kinetics are described by an allosteric mechanism with a fast reversible bimolecular binding step of PEP to a high affinity (tensed) form of PEPC, which is in equilibrium with its low affinity (relaxed) form. The influence of allosteric effectors on the conformational transition step is demonstrated in support of the description of the kinetics of PEPC by applying a concerted allosteric mechanism as introduced by Monod, Wyman and Changeux. In summary, we present data for the influence of allosteric activators on the kinetics of PEP binding to PEPC and on the concentration dependence of the isomerisation reaction between two allosteric forms of PEPC.
Keywords :
Phosphoenolpyruvate carboxylase (PEPC) , Kinetics of phosphoenolpyruvate binding , enzyme kinetics , Fast reaction techniques , Allosteric enzyme regulation
Journal title :
Biophysical Chemistry
Journal title :
Biophysical Chemistry