Abstract :
Published breakthrough time, adsorption rate, and capacity data for components of organic vapor mixtures adsorbed from flows through fixed activated carbon beds have been analyzed. Capacities (as stoichiometric centers of constant pattern breakthrough curves) yielded stoichiometric times τ, which are useful for determining elution orders of mixture components. Where authors did not report calculated adsorption rate coefficients kv of the Wheeler (or, more general, Reaction Kinetic) breakthrough curve equation, we calculated them from breakthrough times and τ. Ninety-five kv (in mixture)/kv (single vapor) ratios at similar vapor concentrations were calculated and averaged for elution order categories. For 43 first-eluting vapors the average ratio (1.07) was statistically no different (standard deviation 0.21) than unity, so that we recommend using the single-vapor kv for such. Forty-seven second-eluting vapor ratios averaged 0.85 (standard deviation 0.24), also not significantly different from unity; however, other evidence and considerations lead us to recommend using kv (in mixture)=0.85kv (single vapor). Five third- and fourth-eluting vapors gave an average of 0.56 (standard deviation 0.16) for a recommended kv (in mixture)=0.56kv (single vapor) for such.