Title of article :
Development and validation of an empirical free energy function for calculating protein–protein binding free energy surfaces Original Research Article
Author/Authors :
Joseph Audie، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
84
To page :
91
Abstract :
In a previous paper, we described a novel empirical free energy function that was used to accurately predict experimental binding free energies for a diverse test set of 31 protein–protein complexes to within ≈ 1.0 kcal. Here, we extend that work and show that an updated version of the function can be used to (1) accurately predict native binding free energies and (2) rank crystallographic, native-like and non-native binding modes in a physically realistic manner. The modified function includes terms designed to capture some of the unfavorable interactions that characterize non-native interfaces. The function was used to calculate one-dimensional binding free energy surfaces for 21 protein complexes. In roughly 90% of the cases tested, the function was used to place native-like and crystallographic binding modes in global free energy minima. Our analysis further suggests that buried hydrogen bonds might provide the key to distinguishing native from non-native interactions. To the best of our knowledge our function is the only one of its kind, a single expression that can be used to accurately calculate native and non-native binding free energies for a large number of proteins. Given the encouraging results presented in this paper, future work will focus on improving the function and applying it to the protein–protein docking problem.
Keywords :
Binding affinity , Protein–protein , Docking , Free energy , Scoring function , Computational
Journal title :
Biophysical Chemistry
Serial Year :
2009
Journal title :
Biophysical Chemistry
Record number :
1120137
Link To Document :
بازگشت