Abstract :
High hydrostatic pressure has a profound physiological impact on lipid membranes, primarily resulting in tighter packing and restriction of acyl-chain motion. To fulfill membrane protein functions in high-pressure environments, deep-sea organisms possess specialized cell membranes. Although the effects of high-pressure on model membranes have been investigated in great detail, high-pressure-induced structural changes in living cell membranes remain to be elucidated. Of the spectroscopic techniques available to date, fluorescence anisotropy measurement is a common useful method that provides information on dynamic membrane properties. This mini-review focuses on pressure-induced changes in natural cell membranes, analyzed by means of high-pressure time-resolved fluorescence anisotropy measurement (HP-TRFAM). Specifically, the role of eicosapentaenoic acid in deep-sea piezophiles is described in terms of the structural integrity of the membrane under high pressure.
Keywords :
TMA-DPH , Deep-sea piezophile , Membrane fluidity , High-pressure time-resolved fluorescence anisotropy measurement (HP-TRFAM)