Author/Authors :
M. Letellier، نويسنده , , F. Chevallier، نويسنده , , Mathieu Morcrette، نويسنده ,
Abstract :
We show a continuous, in situ nuclear magnetic resonance (NMR) experiment on a lithium/graphite electrochemical cell. The objective is to study a commercial graphite currently used as negative electrodes in secondary lithium batteries. A plastic cell is made, with metallic lithium as the counter electrode and 1 mol dm−3 LiPF6/ethylene carbonate (EC) + diethylcarbonate (DEC) electrolyte. The reversible capacity is 346 mAh/g and the irreversible capacity 55 mAh/g, measured in the galvanostatic mode, at a rate of C/20 (20 h for the theoretical capacity of LiC6) for the first cycle. We show the first discharge and the first charge of the cell inside the magnet and record simultaneously and regularly (in real time) static 7Li NMR spectra. As expected, we observe the quadrupolar lines characteristic of the lithium graphite intercalation compounds (GICs). During the discharge, the two types of in-plane densities of Li are successively found that correspond to the dilute LiC9, then to the dense LiC6 configuration; during the charge, we observe the successive decrease of these states. The galvanostatic curve helps to identify the stages NMR signature and the stages coexistence.