Title of article :
Application of wave propagation theory to adsorption breakthrough studies of toluene on activated carbon fiber beds Original Research Article
Author/Authors :
Xiaoping Zhang، نويسنده , , Shuixia Chen، نويسنده , , Hsiaotao T. Bi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Based on the wave propagation theory, a dynamics model that combines the nonlinear equilibrium isotherm and the linear mass-transfer equation has been developed to predict the breakthrough behaviour of toluene adsorption in a fixed bed packed with activated carbon fibers. The experimental results showed that the constant-pattern wave model using the Langmuir isotherm equation could capture the dynamic behaviour of the adsorption column. Two important parameters, the half breakthrough time (t1/2) and the volumetric mass-transfer coefficients (kGα) in the model were obtained from linear fitting of the model to experimental breakthrough data. kGα was found to be insensitive to the initial concentration and increased with the increasing the superficial velocity. It was also observed that t1/2 decreases with increasing the superficial velocity and the initial concentration, and increases with increasing the bed height. A sensitivity analysis showed that external mass-transfer had a much stronger influence on the breakthrough curve than internal mass-transfer, confirming that the overall mass-transfer for toluene adsorption onto activated carbon fibers in fixed bed is controlled by external mass-transfer.