Author/Authors :
Antal A. Koos، نويسنده , , Frank Dillon، نويسنده , , Ekaterina A. Obraztsova، نويسنده , , Alison Crossley، نويسنده , , Nicole Grobert، نويسنده ,
Abstract :
We investigated the effect of the reaction parameters on the structure of multi-walled carbon nanotubes containing different concentrations of nitrogen and boron. The nanotubes were produced using a ‘standard’ aerosol chemical vapour deposition technique in conjunction with benzylamine, triethylborane, hexane and toluene mixtures. These precursors were thermally decomposed between 800 and 1100 °C under argon at atmospheric pressure. By varying the precursor concentrations, the nitrogen and boron content of the nanotubes could be altered between 0–2.2 and 0–0.5 at.% respectively. Using a typical laboratory-sized 50 cm long tube furnace, yields between 0.3 and 1.5 g of nanotubes/10 min were relatively easily achieved. Moreover, we show that doping carbon nanotubes with heteroatoms, such as B and N, can be used to control nanotube diameters, change their defect density, and manipulate their oxidation resistance within a range of ca. 170 °C. Hence, we show that it is possible to tune nanotube properties within a certain interval and to produce nanotubes with relatively well defined properties in quantities usable for further characterisation and for studying their viability in applications such as composite materials, gas sensors, capacitors, and electronic components.