Title of article :
Large negative magnetoresistance and metal–insulator transition observed in MnO/C composite coatings grown on ceramic alumina by metalorganic chemical vapor deposition Original Research Article
Author/Authors :
Ashish Varade، نويسنده , , S.A. Shivashankar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal–insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros–Shklovskii hopping mechanism. Magnetoconductance vs. magnetic field plots obtained at various temperatures show a high magnetoconductance (∼28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed.