Title of article :
Modelling the surface adsorption of methane on carbon nanostructures Original Research Article
Author/Authors :
Olumide O. Adisa، نويسنده , , Barry J. Cox، نويسنده , , James M. Hill، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
3212
To page :
3218
Abstract :
Methane (CH4) adsorption is investigated on both graphite and in the region between two aligned single-walled carbon nanotubes, which we refer to as the groove site. We exploit the Lennard–Jones potential function and the continuous approximation to determine surface binding energies between a single CH4 molecule and graphite and between a single CH4 and two aligned single-walled carbon nanotubes. Our modelling indicates that for a CH4 molecule interacting with graphite, the binding energy of the system is minimized when the CH4 carbon is 3.83 Å above the surface of the graphitic carbon, while the binding energy of the CH4–groove site system is minimized when the CH4 carbon is 5.17 Å away from the common axis shared by the two aligned single-walled carbon nanotubes. Our results confirm the current view that for larger groove sites, CH4 molecules in grooves are likely to move towards the outer surfaces of one of the single-walled carbon nanotubes. Our results are computationally efficient and are in good agreement with experiments and molecular dynamics simulations, and show that CH4 adsorption on graphite and groove surfaces is more favourable at lower temperatures and higher pressures.
Journal title :
Carbon
Serial Year :
2011
Journal title :
Carbon
Record number :
1123420
Link To Document :
بازگشت