Author/Authors :
Sven Hanelt، نويسنده , , J?rg F. Friedrich، نويسنده , , Guillermo Orts-Gil، نويسنده , , Asmus Meyer-Plath، نويسنده ,
Abstract :
Chemical functionalization of carbon nanotubes (CNT) with nucleophiles requires introduction of electrophilic reactive sites on the CNTs. This can, for instance, be accomplished by the chemical bromination procedure with elemental bromine and a set of Lewis acids (BBr3, BF3 × Et2O, AlBr3, FeBr3, ZnBr2, TiBr4, SiBr4, SnBr4, VBr3) or a radical starter like dibenzoylperoxide (DBPO) in appropriate solvents at varied temperature. The present approach to electrophilic sites relies on the well-known electrophilic aromatic substitution or addition of bromine with aromatic structural units. In addition to the use of bromine, the introduction of haloalkyl groups was also investigated here using bis-electrophiles or haloalcohols and Brønsted acids. The advantages and drawbacks of the studied reaction conditions, the obtained degree of bromination as analyzed by X-ray photoelectron spectroscopy (XPS) and the amount of introduced bromine that can be substituted by a nucleophile are presented and discussed.