Title of article
Observation of the semiconductor–metal transition behavior in monolayer graphene Original Research Article
Author/Authors
Y.P. Liu، نويسنده , , W.S. Lew، نويسنده , , S. Goolaup، نويسنده , , Z.X. Shen، نويسنده , , L. Sun، نويسنده , , T.J. Zhou، نويسنده , , S.K. Wong، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2012
Pages
7
From page
2273
To page
2279
Abstract
We have observed that during temperature-dependent four-terminal resistance measurement of monolayer graphene, the resistance exhibits anomalous rising and falling behavior at different temperature regions. At lower temperature region (2–200 K) the resistance decreases gradually, but when the temperature rise further it turn to a sudden increase, and after 280 K it resumes gradual decrease. The rising and falling resistance behavior is characteristic of semiconductor or metal property. Consequently, the resistance transition follows a phase of semiconductor–metal–semiconductor. However, when a perpendicular magnetic field is applied, the resistance shows reverse transition behavior which follows a sequence of metal–semiconductor–metal. The novel transition property is attributed to the competition between the disorder of lattice defects as a short-range scattering in monolayer graphene and the Landau levels interaction. Magneto-transport measurement reveals that the excitonic gap induced by magnetic field in the monolayer graphene show an anomalous thermally activated property.
Journal title
Carbon
Serial Year
2012
Journal title
Carbon
Record number
1124032
Link To Document