• Title of article

    Observation of the semiconductor–metal transition behavior in monolayer graphene Original Research Article

  • Author/Authors

    Y.P. Liu، نويسنده , , W.S. Lew، نويسنده , , S. Goolaup، نويسنده , , Z.X. Shen، نويسنده , , L. Sun، نويسنده , , T.J. Zhou، نويسنده , , S.K. Wong، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    7
  • From page
    2273
  • To page
    2279
  • Abstract
    We have observed that during temperature-dependent four-terminal resistance measurement of monolayer graphene, the resistance exhibits anomalous rising and falling behavior at different temperature regions. At lower temperature region (2–200 K) the resistance decreases gradually, but when the temperature rise further it turn to a sudden increase, and after 280 K it resumes gradual decrease. The rising and falling resistance behavior is characteristic of semiconductor or metal property. Consequently, the resistance transition follows a phase of semiconductor–metal–semiconductor. However, when a perpendicular magnetic field is applied, the resistance shows reverse transition behavior which follows a sequence of metal–semiconductor–metal. The novel transition property is attributed to the competition between the disorder of lattice defects as a short-range scattering in monolayer graphene and the Landau levels interaction. Magneto-transport measurement reveals that the excitonic gap induced by magnetic field in the monolayer graphene show an anomalous thermally activated property.
  • Journal title
    Carbon
  • Serial Year
    2012
  • Journal title
    Carbon
  • Record number

    1124032