Title of article :
Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing Original Research Article
Author/Authors :
S. Mohammadi، نويسنده , , Z. Kolahdouz، نويسنده , , S. Darbari، نويسنده , , S. Mohajerzadeh، نويسنده , , N. Masoumi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
We report the realization of graphene nanosheets by means of unzipping carbon nanotubes grown on silicon substrates. The formation of carbon nanotubes is possible with a gas mixture of methane and hydrogen in a direct-current plasma enhanced chemical vapor deposition reactor at a temperature of 700 °C. To avoid the undesired agglomeration of nickel islands as the catalyst layer, a hydrogen-assisted pre-treatment has been used. Vertically aligned CNTs are placed horizontally on a silicon substrate and unzipped using a sequential passivation and etching process in a reactive ion etching unit. A mixture of hydrogen, oxygen and SF6 gases are used to result in proper unzipping of horizontal CNTs. Scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy have been exploited to investigate the physical properties of the grown nano-structures. In addition, the composition of the passivation layer has been examined using energy dispersive spectroscopy. Multilayered graphene sheets with a height of 3 nm have been obtained.