Title of article :
Simple fabrication of strongly coupled cobalt ferrite/carbon nanotube composite based on deoxygenation for improving lithium storage Original Research Article
Author/Authors :
Hong-Bo Wen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
12
From page :
112
To page :
123
Abstract :
An easy method to synthesize a strongly coupled cobalt ferrite/carbon nanotube (CoFe2O4/CNT) composite with oxygen bridges between CoFe2O4 and reduced carbon nanotubes (CNTs) by calcining the precursor material was reported. The precursor was prepared by an electrostatic self-assembly of the exfoliated Co(II)Fe(II)Fe(III)-layered double hydroxide (CoFeFe-LDH) nanosheets and acid treated CNTs. The deoxygenation effect of ferrous ion (Fe2+) in CoFeFe-LDH nanosheets on the oxygen-containing groups of acid treated CNTs was investigated by X-ray photoelectron spectroscopy (XPS) measurement. After thermal conversion, the obtained CoFe2O4 was bonded to the reduced CNTs through Metal–O–C (oxygen bridge), which was characterized by XPS, Fourier transform infrared spectroscopy, and Raman spectroscopy. When applied as an anode for lithium-ion battery, the CoFe2O4/CNT composite exhibited a low resistance of charge transfer and Li-ion diffusion, good cycle performance, and high rate capability. At a lower current density of 0.15 A·g−1, a specific discharge capacity of 910 mA·h·g−1 was achieved up to 50 cycles. When current density was increased to 8.8 A·g−1, the CoFe2O4/CNT composite still delivered 500 mA·h·g−1.
Journal title :
Carbon
Serial Year :
2013
Journal title :
Carbon
Record number :
1125456
Link To Document :
بازگشت