Title of article :
Feasibility of Target Material Recycling as Waste Management Alternative
Author/Authors :
Henderson، Jon D. نويسنده , , El-Guebaly، L. نويسنده , , Wilson، P. نويسنده , , Varuttamaseni، A. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
-505
From page :
506
To page :
0
Abstract :
The issue of waste management has been studied simultaneously along with the development of the ARIES heavy-ion-driven inertial fusion energy (IFE) concept. Options for waste management include disposal in repositories, recycling, or clearance from regulatory control, following a reasonable cooling period. This paper concerns the feasibility of recycling the heavy-ionbeam targets, in particular the hohlraum wall materials that include, for example, Au/Gd, Au, W, Pb, Hg, Ta, Pb/Ta/Cs, Hg/W/Cs, Pb/Hf, Hf, solid Kr, and solid Xe. The choice between target material disposal and recycling depends on the amount of waste generated relative to the nuclear island, the strategy to solve the recycling problem, and the impact of the additional cost and complexity of the recycling process on the overall machine. A detailed flow diagram for the elements of the recycling process was developed to analyze two extreme activation cases: (a) one-shot use and then disposal in a repository and (b) recycling continuously during plant life without removal of transmutation products. Metrics for comparing the two scenarios included waste level, dose to recycling equipment, additional cost, and design complexity. Comparing the two approaches indicated a preference for the one-shot scenario as it generates 1 m^3/yr of extremely low-level waste (Class A) and offers attractive design and economics features. Recycling reduces the target waste stream by a factor of 10 or more but introduces additional issues. It may produce high-level waste, requires remote handling, adds radioactive storage facilities, and increases the cost and complexity of the plant. The inventory analysis indicated that the heavy-ion-beam (HIB) target materials represent a very small waste stream compared to that of the nuclear island (<1% of the total waste). This means recycling is not a "must" requirement for IFE-HIB power plants unless the target materials have cost and/or resource problems (e.g., Au and Gd). In this case, the additional cost and complexity of the recycling process should be factored into the economics of IFE power plants.
Keywords :
Fusion Transmutation of Waste Reactor , FTWR
Journal title :
FUSION SCIENCE AND TECHNOLOGY
Serial Year :
2004
Journal title :
FUSION SCIENCE AND TECHNOLOGY
Record number :
112957
Link To Document :
بازگشت