Title of article :
The quantum temperature of accelerating cosmological models of an entangled Universe Original Research Article
Author/Authors :
Hans-Joachim Blome، نويسنده , , Thomas L. Wilson، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
5
From page :
111
To page :
115
Abstract :
Since the conception of quantum cosmology was introduced by Lemaitre in 1931, many authors have discussed the quantum nature of the Universe. Yet the most significant new feature of quantum physics, the notion of quantum nonlocality and its verification using Earth-based experiments, is never addressed by cosmologists because they basically do not know how to deal with it. In the spirit of making the transition “from quarks to cosmos” we will demonstrate how this is done. We show how to estimate the temperature of the flat Friedmann–Lemaitre–Robertson–Walker spacetime using a spherically symmetric approximation of the metric in conjunction with Lee’s theorem for scalar quantum fields on curved backgrounds. This temperature dependence is not the same as the classical Gamow temperature which follows from general relativity for the radiation-dominated era of the Big Bang model, and we relate this result to the question of decoherence in the very early Universe.
Keywords :
Quantum temperature , Accelerating cosmological models , Entangled Universe
Journal title :
Advances in Space Research
Serial Year :
2005
Journal title :
Advances in Space Research
Record number :
1129977
Link To Document :
بازگشت