Title of article :
Recent theoretical and observational developments in magnetic helicity studies Original Research Article
Author/Authors :
C. H. Mandrini and P. Demoulin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
20
From page :
1674
To page :
1693
Abstract :
Magnetic helicity quantifies how the magnetic field is sheared and twisted compared to its lowest energy state (potential field). Such stressed magnetic fields are usually observed in association with flares, eruptive filaments, and coronal mass ejections (CMEs). Magnetic helicity plays a key role in magnetohydrodynamics because it is almost preserved on a timescale less than the global diffusion time scale. Its conservation defines a constraint to the magnetic field evolution. Only relatively recently, scientists have realized that magnetic helicity can be computed from observations, and methods have been derived to bridge the gap between theory and observations. At the photospheric level, the rate (or flux) of magnetic helicity can be computed from the evolution of longitudinal magnetograms. The coronal helicity is estimated from magnetic extrapolation, while the helicity ejected in magnetic clouds (interplanetary counter-part of CMEs) is derived through modelling of in situ magnetic field measurements. Using its conserved property, a quantitative link between phenomena observed in the corona and then in the interplanetary medium has been achieved. Article Outline
Keywords :
Magnetic fields , Coronal mass ejections , Magnetic clouds , Magneto-hydrodynamic , Magnetic helicity , Flares
Journal title :
Advances in Space Research
Serial Year :
2007
Journal title :
Advances in Space Research
Record number :
1131631
Link To Document :
بازگشت