Title of article :
Cohesive property of magnetized neutron star surfaces: Computations and implications Original Research Article
Author/Authors :
Z. Medin، نويسنده , , D. Lai، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
6
From page :
1466
To page :
1471
Abstract :
The cohesive energy of condensed matter in strong magnetic fields is a fundamental quantity characterizing magnetized neutron star surfaces. The cohesive energy refers to the energy required to pull an atom out of the bulk condensed matter at zero pressure. Theoretical models of pulsar and magnetar magnetospheres depend on the cohesive properties of the surface matter in strong magnetic fields. For example, depending on the cohesive energy of the surface matter, an acceleration zone (“polar gap”) above the polar cap of a pulsar may or may not form. Also, condensation of the neutron star surface, if it occurs, can significantly affect thermal emission from isolated neutron stars. We describe our calculations of the cohesive property of matter in strong magnetic fields, and discuss the implications of our results to the recent observations of neutron star surface emission as well as to the detection/non-detection of radio emission from magnetars.
Keywords :
Stars: magnetic fields , Radiation mechanisms: non-thermal , Stars: pulsars , Stars: neutron
Journal title :
Advances in Space Research
Serial Year :
2007
Journal title :
Advances in Space Research
Record number :
1131852
Link To Document :
بازگشت