Title of article :
Three-dimensional global simulation of multiple ICMEs’ interaction and propagation from the Sun to the heliosphere following the 25–28 October 2003 solar events Original Research Article
Author/Authors :
C.-C. Wu، نويسنده , , C.D. Fry، نويسنده , , M. Dryer، نويسنده , , S.T. Wu، نويسنده , , B. Thompson، نويسنده , , Kan Liou، نويسنده , , X.S. Feng، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
8
From page :
1827
To page :
1834
Abstract :
This study performs simulations of interplanetary coronal mass ejection (ICME) propagation in a realistic three-dimensional (3D) solar wind structure from the Sun to the Earth by using the newly developed hybrid code, HAFv.2+3DMHD. This model combines two simulation codes, Hakamada–Akasofu–Fry code version 2 (HAFv.2) and a fully 3D, time-dependent MHD simulation code. The solar wind structure is simulated out to 0.08 AU (18 Rs) from source surface maps using the HAFv.2 code. The outputs at 0.08 AU are then used to provide inputs for the lower boundary, at that location, of the 3D MHD code to calculate solar wind and its evolution to 1 AU and beyond. A dynamic disturbance, mimicking a particular flare’s energy output, is delivered to this non-uniform structure to model the evolution and interplanetary propagation of ICMEs (including their shocks). We then show the interaction between two ICMEs and the dynamic process during the overtaking of one shock by the other. The results show that both CMEs and heliosphere current sheet/plasma sheet were deformed by interacting with each other.
Keywords :
Sun: flare , Sun: coronal mass ejection , 3D globe MHD simulation , Sun: interplanetary shock
Journal title :
Advances in Space Research
Serial Year :
2007
Journal title :
Advances in Space Research
Record number :
1131901
Link To Document :
بازگشت