Title of article :
Polynomial Hamiltonian systems with a nilpotent critical point Original Research Article
Author/Authors :
Maoan Han، نويسنده , , Chenggang Shu، نويسنده , , Junmin Yang، نويسنده , , Abraham C.-L. Chian Close preview | Purchase PDF - $31.50 | Recommended articles | Related reference work articles ، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
5
From page :
521
To page :
525
Abstract :
The study of Hamiltonian systems is important for space physics and astrophysics. In this paper, we study local behavior of an isolated nilpotent critical point for polynomial Hamiltonian systems. We prove that there are exact three cases: a center, a cusp or a saddle. Then for quadratic and cubic Hamiltonian systems we obtain necessary and sufficient conditions for a nilpotent critical point to be a center, a cusp or a saddle. We also give phase portraits for these systems under some conditions of symmetry.
Keywords :
mathematics , Hamiltonian systems , Space physics , Astrophysics , Nilpotent critical point
Journal title :
Advances in Space Research
Serial Year :
2010
Journal title :
Advances in Space Research
Record number :
1133090
Link To Document :
بازگشت