• Title of article

    Polynomial Hamiltonian systems with a nilpotent critical point Original Research Article

  • Author/Authors

    Maoan Han، نويسنده , , Chenggang Shu، نويسنده , , Junmin Yang، نويسنده , , Abraham C.-L. Chian Close preview | Purchase PDF - $31.50 | Recommended articles | Related reference work articles ، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2010
  • Pages
    5
  • From page
    521
  • To page
    525
  • Abstract
    The study of Hamiltonian systems is important for space physics and astrophysics. In this paper, we study local behavior of an isolated nilpotent critical point for polynomial Hamiltonian systems. We prove that there are exact three cases: a center, a cusp or a saddle. Then for quadratic and cubic Hamiltonian systems we obtain necessary and sufficient conditions for a nilpotent critical point to be a center, a cusp or a saddle. We also give phase portraits for these systems under some conditions of symmetry.
  • Keywords
    mathematics , Hamiltonian systems , Space physics , Astrophysics , Nilpotent critical point
  • Journal title
    Advances in Space Research
  • Serial Year
    2010
  • Journal title
    Advances in Space Research
  • Record number

    1133090