Title of article :
A method for calculating the eigenvalues of large Hermitian matrices by second-order recursion formulae Original Research Article
Author/Authors :
Ayori Mitsutake، نويسنده , , Toshiaki Iitaka، نويسنده , , Yuko Okamoto، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1996
Pages :
15
From page :
217
To page :
231
Abstract :
A general discussion of a method for solving the eigenvalue problem of large N × N Hermitian matrices by using second-order recursion formulae is given. In principle, the method is suitable for finding not only the extreme eigenvalues and the corresponding eigenvectors but also any other eigenvalues in the range of oneʹs specification. The effectiveness of the algorithm is illustrated by calculation of a few low-lying eigenvalues of the Heisenberg model for an antiferromagnetic chain with N up to 1048576.
Keywords :
Eigenvalue problem , Sparse matrices , Lanczos method , Schr?dinger equations , Large matrices , Hermitian matrices
Journal title :
Computer Physics Communications
Serial Year :
1996
Journal title :
Computer Physics Communications
Record number :
1134078
Link To Document :
بازگشت