Title of article :
Solving the gluon Dyson—Schwinger equation in the Mandelstam approximation Original Research Article
Author/Authors :
A. Hauck، نويسنده , , C. S. Fischer and L. Von Smekal، نويسنده , , R. Alkofer، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1998
Abstract :
Truncated Dyson—Schwinger equations represent finite subsets of the equations of motion for Greenʹs functions. Solutions to these nonlinear integral equations can account for nonperturbative correlations. We describe the solution to the Dyson—Schwinger equation for the gluon propagator of Landau gauge QCD in the Mandelstam approximation. This involves a combination of numerical and analytic methods: an asymptotic infrared expansion of the solution is calculated recursively. In the ultraviolet, the problem reduces to an analytically solvable differential equation. The iterative solution is then obtained numerically by matching it to the analytic results at appropriate points. Matching point independence is obtained for sufficiently wide ranges. The solution is used to extract a nonperturbative β-function. The scaling behavior is in good agreement with perturbative QCD. No further fixed point for positive values of the coupling is found which thus increases without bound in the infrared. The nonperturbative result implies an infrared singular quark interaction relating the scale A of the subtraction scheme to the string tension σ.
Keywords :
Infrared asymptotic series , Constrained iterative solution , Landau gauge , Mandelstam approximation , Nonperturbative QCD , Gluon propagator , nonlinear integral equations , Dyson—Schwinger equations
Journal title :
Computer Physics Communications
Journal title :
Computer Physics Communications