Title of article :
An exponentially-fitted high order method for long-term integration of periodic initial-value problems Original Research Article
Author/Authors :
Z.A. Anastassi and T.E. Simos، نويسنده , , Jesus Vigo-Aguiar، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
8
From page :
358
To page :
365
Abstract :
In this paper an exponentially-fitted eighth algebraic order explicit symmetric method is developed. The new method integrates exactly any linear combination of the functions {1,x,x2,x3,x4,x5,x6,x7,exp(±wx)}. Numerical results on long term integration of well-known periodic problems indicate that the new method is much more efficient than the “classical” symmetric eighth algebraic order developed by Quinlan and Tremaine [Astronom. J. 100 (1990) 1694–1700] and the well-known Runge–Kutta–Nyström Dormand et al. eighth algebraic order method [IMA J. Numer. Anal. 7(1987) 423–430].
Keywords :
Symmetric methods , Exponential-fitting , Orbit problems , Runge–Kutta–Nsyst?m methods
Journal title :
Computer Physics Communications
Serial Year :
2001
Journal title :
Computer Physics Communications
Record number :
1135712
Link To Document :
بازگشت