Title of article :
Better than $l/Mflops sustained: a scalable PC-based parallel computer for lattice QCD Original Research Article
Author/Authors :
Zolt?n Fodor، نويسنده , , S?ndor D. Katz، نويسنده , , Gabor Papp، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2003
Pages :
14
From page :
121
To page :
134
Abstract :
We study the feasibility of a PC-based parallel computer for medium to large scale lattice QCD simulations. The Eötvös Univ., Inst. Theor. Phys. cluster consists of 137 Intel P4-1.7GHz nodes with 512 MB RDRAM. The 32-bit, single precision sustained performance for dynamical QCD without communication is 1510 Mflops/node with Wilson and 970 Mflops/node with staggered fermions. This gives a total performance of 208 Gflops for Wilson and 133 Gflops for staggered QCD, respectively (for 64-bit applications the performance is approximately halved). The novel feature of our system is its communication architecture. In order to have a scalable, cost-effective machine we use Gigabit Ethernet cards for nearest-neighbor communications in a two-dimensional mesh. This type of communication is cost effective (only 30% of the hardware costs is spent on the communication). According to our benchmark measurements this type of communication results in around 40% communication time fraction for lattices upto 483·96 in full QCD simulations. The price/sustained-performance ratio for full QCD is better than $l/Mflops for Wilson (and around $1.5/Mflops for staggered) quarks for practically any lattice size, which can fit in our parallel computer. The communication software is freely available upon request for non-profit organizations.
Journal title :
Computer Physics Communications
Serial Year :
2003
Journal title :
Computer Physics Communications
Record number :
1136149
Link To Document :
بازگشت