Title of article :
Effective discrepancy and numerical experiments Original Research Article
Author/Authors :
Suzanne Varet، نويسنده , , Sidonie Lefebvre، نويسنده , , Gérard Durand، نويسنده , , Antoine Roblin، نويسنده , , Serge Cohen، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2012
Pages :
7
From page :
2535
To page :
2541
Abstract :
Many problems require the computation of a high dimensional integral, typically with a few tens of input factors, with a low number of integrand evaluations. To avoid the curse of dimensionality, we reduce the dimension before applying the Quasi-Monte Carlo method. We will show how to reduce the dimension by computing approximate Sobol indices of the variables with a two-levels fractional factorial design. Then, we will use the Sobol indices to define the effective discrepancy, which turns out to be correlated with the QMC error and thus enables one to choose a good sequence for the integral estimation.
Keywords :
Projection , Discrepancy , Effective dimension
Journal title :
Computer Physics Communications
Serial Year :
2012
Journal title :
Computer Physics Communications
Record number :
1136404
Link To Document :
بازگشت