Title of article
Effective discrepancy and numerical experiments Original Research Article
Author/Authors
Suzanne Varet، نويسنده , , Sidonie Lefebvre، نويسنده , , Gérard Durand، نويسنده , , Antoine Roblin، نويسنده , , Serge Cohen، نويسنده ,
Issue Information
ماهنامه با شماره پیاپی سال 2012
Pages
7
From page
2535
To page
2541
Abstract
Many problems require the computation of a high dimensional integral, typically with a few tens of input factors, with a low number of integrand evaluations. To avoid the curse of dimensionality, we reduce the dimension before applying the Quasi-Monte Carlo method. We will show how to reduce the dimension by computing approximate Sobol indices of the variables with a two-levels fractional factorial design. Then, we will use the Sobol indices to define the effective discrepancy, which turns out to be correlated with the QMC error and thus enables one to choose a good sequence for the integral estimation.
Keywords
Projection , Discrepancy , Effective dimension
Journal title
Computer Physics Communications
Serial Year
2012
Journal title
Computer Physics Communications
Record number
1136404
Link To Document