• Title of article

    Effective discrepancy and numerical experiments Original Research Article

  • Author/Authors

    Suzanne Varet، نويسنده , , Sidonie Lefebvre، نويسنده , , Gérard Durand، نويسنده , , Antoine Roblin، نويسنده , , Serge Cohen، نويسنده ,

  • Issue Information
    ماهنامه با شماره پیاپی سال 2012
  • Pages
    7
  • From page
    2535
  • To page
    2541
  • Abstract
    Many problems require the computation of a high dimensional integral, typically with a few tens of input factors, with a low number of integrand evaluations. To avoid the curse of dimensionality, we reduce the dimension before applying the Quasi-Monte Carlo method. We will show how to reduce the dimension by computing approximate Sobol indices of the variables with a two-levels fractional factorial design. Then, we will use the Sobol indices to define the effective discrepancy, which turns out to be correlated with the QMC error and thus enables one to choose a good sequence for the integral estimation.
  • Keywords
    Projection , Discrepancy , Effective dimension
  • Journal title
    Computer Physics Communications
  • Serial Year
    2012
  • Journal title
    Computer Physics Communications
  • Record number

    1136404