Title of article :
Networking for High Energy and Nuclear Physics Original Research Article
Author/Authors :
Harvey B. Newman، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
7
From page :
224
To page :
230
Abstract :
This report gives an overview of the status and outlook for the worldʹs research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFAʹs Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicistsʹ work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point “light paths” to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 “Tier1” and “Tier2” centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data transfers serving the community complete with high probability, often while coexisting with many other streams of network traffic. Responding to these needs, and to the scientific mission, physicists working with network engineers and computer scientists have made substantial progress in the development of protocols and systems that promise to meet these needs, placing our community among the world leaders in the development as well as use of large-scale networks. A great deal of work remains, and is continuing. As we advance in these areas, often (as in the past year) with great rapidity, th
Keywords :
Network research , High-energy physics
Journal title :
Computer Physics Communications
Serial Year :
2007
Journal title :
Computer Physics Communications
Record number :
1137292
Link To Document :
بازگشت