• Title of article

    Dynamic phase transition and multicritical dynamic phase diagrams of the kinetic spin-3/2 Blume–Emery–Griffiths model with repulsive biquadratic coupling under a time-dependent oscillating external field Original Research Article

  • Author/Authors

    Bayram Deviren، نويسنده , , Mustafa Keskin، نويسنده , , Osman Canko، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2008
  • Pages
    18
  • From page
    420
  • To page
    437
  • Abstract
    We extend our recent paper [O. Canko, B. Deviren, M. Keskin, J. Phys.: Condens. Mater 118 (2006) 6635] to present a study, within a mean-field approach, the stationary states of the kinetic spin-3/2 Blume–Emery–Griffiths model with repulsive biquadratic interaction under the presence of a time varying (sinusoidal) magnetic field. We found that the dynamic phase diagrams of the present work exhibit more complex, richer and more topological different types of phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the ferrimagnetic (i) phase in addition to the ferromagnetic image (image), ferromagnetic image (image), antiquadrupolar or staggered (a) and disordered (d) phases, and the image, image, image, image, image and/or image coexistence regions in addition to the image, image, image, image and/or image coexistence regions, depending on interaction parameters. Moreover, the phase diagrams exhibit dynamic zero-temperature critical, critical end, double critical end, multicritical, and/or pentacritical special points in addition to the dynamic tricritical, double critical end point, triple, quadruple and/or tetracritical special points that depending on the interaction parameters.
  • Keywords
    Dynamic phase transition , Phase diagrams , Two-sublattice spin-3/2 Blume–Emery–Griffiths model , Oscillating magnetic field , Glauber dynamics
  • Journal title
    Computer Physics Communications
  • Serial Year
    2008
  • Journal title
    Computer Physics Communications
  • Record number

    1137400