Title of article :
Second-order stabilized explicit Runge–Kutta methods for stiff problems Original Research Article
Author/Authors :
J. Mart?n-Vaquero، نويسنده , , B. Janssen، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2009
Abstract :
Stabilized Runge–Kutta methods (they have also been called Chebyshev–Runge–Kutta methods) are explicit methods with extended stability domains, usually along the negative real axis. They are easy to use (they do not require algebra routines) and are especially suited for MOL discretizations of two- and three-dimensional parabolic partial differential equations. Previous codes based on stabilized Runge–Kutta algorithms were tested with mildly stiff problems. In this paper we show that they have some difficulties to solve efficiently problems where the eigenvalues are very large in absolute value (over 105). We also develop a new procedure to build this kind of algorithms and we derive second-order methods with up to 320 stages and good stability properties. These methods are efficient numerical integrators of very large stiff ordinary differential equations. Numerical experiments support the effectiveness of the new algorithms compared to well-known methods as RKC, ROCK2, DUMKA3 and ROCK4.
Keywords :
Stiff problems , Stabilized explicit Runge–Kutta methods
Journal title :
Computer Physics Communications
Journal title :
Computer Physics Communications