Title of article :
Rapid Fourier space solution of linear partial integro-differential equations in toroidal magnetic confinement geometries Original Research Article
Author/Authors :
B.F. McMillan، نويسنده , , S. Jolliet، نويسنده , , A. Bottino، نويسنده , , P. Angelino، نويسنده , , T.M. Tran، نويسنده , , L. Villard، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Abstract :
Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poissonʹs equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al., (2007) ), with a regular (non-field-aligned) mesh.
Keywords :
FEM , Spectral methods , Gyrokinetics
Journal title :
Computer Physics Communications
Journal title :
Computer Physics Communications