Title of article
A spectral collocation method for a rotating Bose–Einstein condensation in optical lattices Original Research Article
Author/Authors
Z.-C. Li، نويسنده , , S.-Y. Chen، نويسنده , , C.-S. Chien، نويسنده , , H.-S. Chen، نويسنده ,
Issue Information
ماهنامه با شماره پیاپی سال 2011
Pages
20
From page
1215
To page
1234
Abstract
We extend the study of spectral collocation methods (SCM) in Li et al. (2009) for semilinear elliptic eigenvalue problems to that for a rotating Bose–Einstein condensation (BEC) and a rotating BEC in optical lattices. We apply the Lagrange interpolants using the Legendre–Gauss–Lobatto points to derive error bounds for the SCM. The optimal error bounds are derived for both image-norm and image-norm. Extensive numerical experiments on a rotating Bose–Einstein condensation and a rotating BEC in optical lattices are reported. Our numerical results show that the convergence rate of the SCM is exponential, and is independent of the collocation points we choose.
Keywords
Legendre polynomials , Error analysis , Strong monotonicity condition , Gross–Pitaevskii equation , Spectral-Galerkin method
Journal title
Computer Physics Communications
Serial Year
2011
Journal title
Computer Physics Communications
Record number
1138266
Link To Document