Title of article :
On the angular defect of triangulations and the pointwise approximation of curvatures Original Research Article
Author/Authors :
V. Borrelli، نويسنده , , F. Cazals، نويسنده , , J.-M. Morvan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
23
From page :
319
To page :
341
Abstract :
Let S be a smooth surface of E3, p a point on S, km, kM, kG and kH the maximum, minimum, Gauss and mean curvatures of S at p. Consider a set {pippi+1}i=1,…,n of n Euclidean triangles forming a piecewise linear approximation of S around p—with pn+1=p1. For each triangle, let γi be the angle ∠pippi+1, and let the angular defect at p be 2π−∑iγi. This paper establishes, when the distances ∥ppi∥ go to zero, that the angular defect is asymptotically equivalent to a homogeneous polynomial of degree two in the principal curvatures.
Keywords :
Differential geometry , approximations , Smooth surfaces , Meshes , Curvatures
Journal title :
Computer Aided Geometric Design
Serial Year :
2003
Journal title :
Computer Aided Geometric Design
Record number :
1139115
Link To Document :
بازگشت