Title of article :
Rapid Phosphorylation of a Syntaxin during the Avr9/Cf-9-Race-Specific Signaling Pathway
Author/Authors :
Jones، Jonathan D.G. نويسنده , , Heese، Antje نويسنده , , Ludwig، Andrea A. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
The tomato (Lycopersicon esculentum) resistance (R) gene Cf-9 is required for resistance to races of the fungal pathogen Cladosporium fulvum expressing the elicitor Avr9 and also confers responsiveness to Avr9 in Cf-9-containing transgenic tobacco (Nicotiana tabacum; Cf9 tobacco). Although protein phosphorylation is required for many early Avr9/Cf-9-signaling events, so far the only phosphorylation targets known in this race-specific signaling pathway are three kinases: the two mitogen-activated protein kinases, wound-induced protein kinase and salicylic acid-induced protein kinase, and the calcium-dependent protein kinase NtCDPK2. Here, we provide evidence that a tobacco syntaxin is rapidly and transiently phosphorylated after Avr9 elicitation. The syntaxin was detected with an antibody against NtSyp121, a plasma membrane-localized syntaxin implicated in abscisic acid responses and secretion. Consistent with the gene-for-gene hypothesis, syntaxin phosphorylation required the presence of both Avr9 and Cf-9. This phosphorylation event occurred either upstream of the pathway leading to reactive oxygen species production or in a parallel pathway. Interestingly, rapid syntaxin phosphorylation was triggered by the race-specific elicitor Avr9 but not by flg22P.aer, a general elicitor capable of inducing other defense-related signaling events in Cf9 tobacco such as reactive oxygen species production, mitogen-activated protein kinase activation, and PR5 transcript up-regulation. Furthermore, NtSyp121 transcript levels were increased at 24 h after elicitation with Avr9 but not with flg22^P.aer. Because most other previously described Avr9- and flg22^P.aer-elicited responses are similar, syntaxin phosphorylation and NtSyp121 transcript up-regulation may serve as novel early biochemical and late molecular markers, respectively, to elucidate further differences in the signaling responses between these two elicitors.
Keywords :
Particle size , Numerical models , mathematical models , design , Sedimentation , Abatement and removal
Journal title :
PLANT PHYSIOLOGY
Journal title :
PLANT PHYSIOLOGY