Title of article :
Numerical simulations of hydrogen–dislocation interactions in fcc stainless steels.: part II: hydrogen effects on crack tip plasticity at a stress corrosion crack Original Research Article
Author/Authors :
J.P. Chateau، نويسنده , , D. Delafosse، نويسنده , , T. Magnin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Abstract :
The discrete simulation method for hydrogen–dislocation interactions is applied to the study of Stress Corrosion Cracking (SCC). We recall the main results of the experimental study of the fracture micro-crystallography in austenitic stainless steels, along with the successive stages of the Corrosion Enhanced Plasticity Model. Numerical simulations allow the assessment of the critical parameters affecting the model stages. Solute hydrogen promotes the formation of dense dislocation pile-ups, and a ‘zigzag’ type of fracture along alternating slip planes at the SC crack tip. We provide an analytical expression for the stress field of a dilatation line in the vicinity of a crack, from which we derive all the hydrogen–crack–dislocation elastic interactions terms. Diffusing hydrogen also has a marked pinning effect on a dislocation source at a crack tip. This effect exhibits a strong dependence on the crystal orientation. These results are discussed from the viewpoint of SCC fracture mechanisms.
Keywords :
Stress corrosion , Hydrogen embrittlement , Dislocation , Austenitic steels
Journal title :
ACTA Materialia
Journal title :
ACTA Materialia