Abstract :
The site preference of early 3d (Ti, V), 4d (Zr, Mo) and 5d (Hf, Ta, W) transition metal elements in C15 NbCr2 Laves phase was studied using first-principles calculations. According to the present calculations, at T = 0 K, Zr, Hf and Ta consistently have a preference for the Nb sites in Nb-rich, Cr-rich and stoichiometric NbCr2, while the site preference of Ti, V, Mo and W varies strongly with alloy composition. Using a statistical–mechanical Wagner–Schottky model based on the canonical ensemble, the finite temperature site occupancy behavior of those transition metal elements in NbCr2 was further predicted. It was found that the site preference of Ti, V, Mo and W also depends strongly on temperature. The calculated results compare favorably with the experimental measurements using ALCHEMI and synchrotron X-ray diffraction techniques.
Keywords :
Point defects , First-principle electron theory , Site preference , Laves phases