Title of article
Collapse Behavior of Steel Special Moment Resisting Frame Connections
Author/Authors
El-Tawil، Sherif نويسنده , , Khandelwal، Kapil نويسنده ,
Issue Information
ماهنامه با شماره پیاپی سال 2007
Pages
-645
From page
646
To page
0
Abstract
There is a common perception that seismic detailing can improve the collapse resistance of steel frame buildings. However, the effect on connection performance of the potentially large catenary, i.e., tensile, forces that can develop during collapse has not yet been adequately studied. The objective of this paper is to use computational structural simulation to investigate a number of key design variables that influence formation of catenary action in steel special moment resisting frame subassemblages. The numerical model used in the study employs a calibrated micromechanical fracture model and is validated using existing test data. The simulation results demonstrate the ductility of seismically designed special moment frame connections and their ability to deform in catenary mode. It is shown that connection ductility and strength are adversely influenced by an increase in beam depth and an increase in the yield to ultimate strength ratio and that the beam web-to-column detail plays an influential role in connection response. A number of conclusions with practical implications are drawn from the numerical results.
Keywords
Biological materials , atomic absorption spetrometry , Arsenic
Journal title
Journal of Structural Engineering(ASCE)
Serial Year
2007
Journal title
Journal of Structural Engineering(ASCE)
Record number
114550
Link To Document