Title of article :
Simulation of Cyclically Loaded Concrete Structures Based on the Finite-Element Method
Author/Authors :
Vecchio، Frank J. نويسنده , , Palermo، Dan نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2007
Pages :
-727
From page :
728
To page :
0
Abstract :
The finite-element method for simulating the nonlinear behavior of reinforced concrete structures has progressed to the point where it is close to being a practical everyday tool for design engineers. Further advancements have made the analysis of arbitrary loading conditions, including reverse cyclic loading or earthquake-type loading, feasible. Recent criticism has questioned the practicality, reliability, and robustness of the finite-element method due to perceived complexities involved in developing the model and interpreting the results. A series of analyses are presented on reinforced concrete structural walls of varying height-to-width ratio, varying wall cross section, and varying levels of reverse cyclic loading to demonstrate that the finite-element procedure is capable of providing quick and reliable simulations, while employing simple modeling techniques. The modeling herein utilizes low-powered rectangular membrane elements, and material properties are smeared within the elements. Behavioral aspects such as ultimate strength, displacements, postpeak ductility, energy dissipation, and failure mechanisms are well simulated.
Keywords :
Arsenic , atomic absorption spetrometry , Biological materials
Journal title :
Journal of Structural Engineering(ASCE)
Serial Year :
2007
Journal title :
Journal of Structural Engineering(ASCE)
Record number :
114559
Link To Document :
بازگشت