Title of article :
Stabilization and strengthening of nanocrystalline copper by alloying with tantalum Original Research Article
Author/Authors :
T. Frolov، نويسنده , , K.A. Darling، نويسنده , , L.J. Kecskes، نويسنده , , Y. MISHIN، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
11
From page :
2158
To page :
2168
Abstract :
Nanocrystalline Cu–Ta alloys belong to an emerging class of immiscible high-strength materials with a significant potential for high-temperature applications. Using molecular dynamics simulations with an angular-dependent interatomic potential, we study the effect of Ta on the resistance to grain growth and mechanical strength of nanocrystalline Cu–6.5 at.% Ta alloys. Ta segregation at grain boundaries greatly increases structural stability and strength in comparison with pure copper and alloys with a uniform distribution of the same amount of Ta. At high temperatures, the segregated Ta atoms agglomerate and form a set of nanoclusters located at grain boundaries. These nanoclusters are capable of pinning grain boundaries and effectively preventing grain growth. It is suggested that the nanoclusters are precursors to the formation of larger Ta particles found in Cu–Ta alloys experimentally.
Keywords :
Nanocrystalline materials , molecular dynamics , Segregation , Grain growth
Journal title :
ACTA Materialia
Serial Year :
2012
Journal title :
ACTA Materialia
Record number :
1146221
Link To Document :
بازگشت