Title of article :
Evolution of microstructure and twin density during thermomechanical processing in a γ-γ’ nickel-based superalloy Original Research Article
Author/Authors :
N. Bozzolo، نويسنده , , N. Souaï، نويسنده , , R.E. Logé، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
Microstructure evolution has been studied in the nickel-based superalloy PER®72 subjected to hot torsion, to annealing below the primary γ’ solvus temperature and to annealing at a supersolvus temperature, with a special emphasis on grain size and twin content. Dynamic abnormal grain growth occurs before the onset of dynamic recrystallization. The resulting bimodal grain size distribution affects the grain-coarsening kinetics at the supersolvus temperature, so that the final microstructures depend on the former straining stages. As a consequence, the twin content does not follow a univocal relationship with the average grain size. The grain boundary velocity history before reaching the final grain size is a contributing factor, and this is notably related to the initial grain size distribution width. Dynamically recrystallized microstructures are by nature more homogeneous and thus give rise to lower rates in supersolvus grain coarsening, and accordingly lead to relatively lower twin densities.
Keywords :
Thermomechanical processing , Grain boundary engineering , Ni-based superalloys , Twin boundary , Microstructure
Journal title :
ACTA Materialia
Journal title :
ACTA Materialia