Title of article :
Linking phase-field and finite-element modeling for process–structure–property relations of a Ni-base superalloy Original Research Article
Author/Authors :
Bradley S. Fromm، نويسنده , , Kunok Chang، نويسنده , , David L. McDowell، نويسنده , , Long-Qing Chen، نويسنده , , Hamid Garmestani، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
Establishing process–structure–property relationships is an important objective in the paradigm of materials design in order to reduce the time and cost needed to develop new materials. A method to link phase-field (process–structure relations) and microstructure-sensitive finite-element (structure–property relations) modeling is demonstrated for subsolvus polycrystalline IN100. A three-dimensional experimental dataset obtained by orientation imaging microscopy performed on serial sections is utilized to calibrate a phase-field model and to calculate inputs for a finite-element analysis. Simulated annealing of the dataset realized through phase-field modeling results in a range of coarsened microstructures with varying grain size distributions that are each input into the finite-element model. A rate-dependent crystal plasticity constitutive model that captures the first-order effects of grain size, precipitate size and precipitate volume fraction on the mechanical response of IN100 at 650 °C is used to simulate stress–strain behavior of the coarsened polycrystals. Model limitations and ideas for future work are discussed.
Keywords :
Crystal plasticity , Finite-element method , Phase-field modeling , Process–structure–property relations , Microstructure-sensitive design
Journal title :
ACTA Materialia
Journal title :
ACTA Materialia