Title of article :
Significant ZT enhancement in p-type Ti(Co,Fe)Sb–InSb nanocomposites via a synergistic high-mobility electron injection, energy-filtering and boundary-scattering approach Original Research Article
Author/Authors :
W.J. Xie، نويسنده , , Y.G. Yan، نويسنده , , S. Zhu، نويسنده , , M. Zhou، نويسنده , , S. Populoh، نويسنده , , K. Ga??zka، نويسنده , , S.J. Poon، نويسنده , , A. Weidenkaff، نويسنده , , J. He، نويسنده , , X.F. Tang، نويسنده , , T.M. Tritt، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Abstract :
It has been demonstrated that InSb nanoinclusions, which are formed in situ, can simultaneously improve all three individual thermoelectric properties of the n-type half-Heusler compound (Ti,Zr,Hf)(Co,Ni)Sb (Xie WJ, He J, Zhu S, Su XL, Wang SY, Holgate T, et al. Acta Mater 2010;58:4795). In the present work, the same approach is adopted to the p-type half-Heusler compound Ti(Co,Fe)Sb. The results of resistivity, Seebeck coefficient, thermal conductivity and Hall coefficient measurements indicate that the combined high-mobility electron injection, low energy electron filtering and boundary scattering, again, lead to a simultaneous improvement in all three individual thermoelectric properties: enhanced Seebeck coefficient and electrical conductivity as well as reduced lattice thermal conductivity. A figure of merit of ZT ≈ 0.33 was attained at 900 K for the sample containing 1.0 at.% InSb nanoinclusions, a ∼450% improvement over the nanoinclusion-free sample. This represents a rare case that the same nanostructuring approach works successfully for both p-type and n-type thermoelectric materials of the same class, hence pointing to a promising materials design route for higher-performance half-Heusler materials in the future and hopefully will realize similar improvement in thermoelectric devices based on such half-Heusler alloys.
Keywords :
Nanocomposites , Half-Heusler , Thermoelectric
Journal title :
ACTA Materialia
Journal title :
ACTA Materialia