Title of article :
Polynomial splines over locally refined box-partitions Original Research Article
Author/Authors :
Tor Dokken، نويسنده , , Tom Lyche، نويسنده , , Kjell Fredrik Pettersen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
26
From page :
331
To page :
356
Abstract :
We address progressive local refinement of splines defined on axes parallel box-partitions and corresponding box-meshes in any space dimension. The refinement is specified by a sequence of mesh-rectangles (axes parallel hyperrectangles) in the mesh defining the spline spaces. In the 2-variate case a mesh-rectangle is a knotline segment. When starting from a tensor-mesh this refinement process builds what we denote an LR-mesh, a special instance of a box-mesh. On the LR-mesh we obtain a collection of hierarchically scaled B-splines, denoted LR B-splines, that forms a nonnegative partition of unity and spans the complete piecewise polynomial space on the mesh when the mesh construction follows certain simple rules. The dimensionality of the spline space can be determined using some recent dimension formulas.
Keywords :
Box-partitions , LR-meshes , Dimension of spline spaces , Locally refined tensor product B-splines , Isogeometric analysis
Journal title :
Computer Aided Geometric Design
Serial Year :
2013
Journal title :
Computer Aided Geometric Design
Record number :
1147793
Link To Document :
بازگشت