Title of article :
Activity and structure-sensitivity of the water-gas shift reaction over Cusingle bondZnsingle bondAl mixed oxide catalysts Original Research Article
Author/Authors :
M.J.L. Ginés، نويسنده , , N. Amadeo، نويسنده , , M. Laborde، نويسنده , , C.R. Apestegu?a، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Abstract :
The activity and structure-sensitivity of the water-gas shift (WGS) reaction over Cusingle bondZnsingle bondAl mixed oxide catalysts were studied. Three sets of samples with different Cu/Zn and (Cu+Zn)/Al atomic ratios were prepared by coprecipitation. Depending on the cation ratio, the ternary hydroxycarbonate precursors contained hydrotalcite, aurichalcite and/or rosasite phases. The decomposed precursors contained CuO, ZnO, ZnAl2O4, and Al2O3. The relative proportion of these phases depended on both the chemical composition of the sample and the calcination temperature employed for decomposing the precursor. After activation with hydrogen, samples were tested for the WGS reaction at 503 K. The turnover frequency of the eighteen samples tested was essentially the same (0.2–0.3 s−1) irrespective of changing the copper metal surface area between 3 and 35 m2/g Cu and the metallic copper dispersion between 0.5 and 5.0%. This indicated that the WGS reaction is a structure-insensitive reaction, as the specific reaction rate r0 (mol CO/h/g Cu) is always proportional to the copper metal surface area. Preparation of mixed oxides with a high copper dispersion is therefore required for obtaining more active catalysts. It was found that the value of the metallic copper dispersion is related to the amount of hydrotalcite contained in the hydroxycarbonate precursor: the higher the hydrotalcite content in the precursor, the higher the copper metal dispersion in the resulting catalyst and, as a consequence, the higher the catalyst activity. Ternary Cu/ZnO/Al2O3 catalysts exhibited a substantially faster WGS activity than binary Cu/ZnO catalysts. The addition of aluminium, although inactive for the WGS reaction, is required for improving the catalyst performance.
Keywords :
Structure-sensitivity , Water-gas shift reaction , Copper oxide/zinc oxide/alumina
Journal title :
Applied Catalysis A:General
Journal title :
Applied Catalysis A:General